M T W T F S S
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
31
 
 
 
 
Add to My Calendar

Responsabili:

Federica Galluzzi  ed  Elena Martinengo
 

Nel calendario si indicano i seminari di geometria algebrica e altre attività di interesse, organizzate dall'Università e dal Politecnico di Torino.

On the K-stability of certain Fano 3-folds

Printer-friendly versionSend by emailPDF version

Data: 

09/02/2023 - 15:00

Aula: 

Aula Seminari

Speaker: 

Luca Giovenzana

Categoria: 

Seminari di Algebra e Geometria Algebrica

Afferenza: 

Loughborough University London

Descrizione: 

Abstract: The existence of Kähler-Einstein (KE) metrics on Fano manifolds is a long-standing problem in algebraic geometry. Since the solution to the Yau-Tian-Donaldson conjecture, the existence of a KE metric on a Fano manifold $X$ has been proven to be equivalent to the K-polystabilty of $X$. In particular, the problem of the existence of a KE metric has been translated in algebro-geometric terms. In my talk, I will explain how the Abban-Zhuang theory can be used to prove K-stability of Fano varieties and apply it to prove the K-stability of certain Fano 3-folds obtained as blow-up of $\mathbb P^3$ in a curve. Everything is based on a work-in-progress with Tiago Duarte Guerreiro and Nivedita Viswanathan.