Evento
Descrizione:
Sommario: Il funtore dei moduli di varieta' stabili M_{2,v} e' stato introdotto da Kollár and Shepherd-Barron per costruire una compattificazione modulare delle varieta' proiettive lisce con fibrato canonico ampio di dimensione n e volume v, simile in spirito alla compattificazione di Deligne--Mumford per curve di genere almeno 2. I recenti progressi nel programma del modello minimale hanno permesso di dimostrare che sui numeri complessi M_{n,v} e' uno stack di Deligne--Mumford proprio.
Discutero' la compattezza di M_{2,v} in caratteristica p e mista, la cui esistenza come Artin stack di tipo finito su Z[1/30] e' stata recentemente dimostrata da Bhatt-Ma-Patakfalvi-Schwede-
Spieghero' come la compattezza e' una conseguenza formale di un analogo locale del teorema di annullamento di Kawamata--Viehweg per singolarita' log canoniche di dimensione 3 e una idea della dimostrazione, ottenuta in collaborazione con E. Arvidsson e Zs. Patakfalvi, di tale annullamento locale.